Investigating Multi-Label Classification for Human Values
نویسندگان
چکیده
This paper describes the development of a scalable process for people and machines working together to identify sections of text that reflect specific human values. A total of 2,005 sentences from 28 prepared testimonies presented before hearings on Net neutrality were manually annotated for one or more of ten human values using an annotation frame based on experience annotating similar content using the Schwartz Values Inventory. Moderately good agreement suggests that meaningful distinctions can often be drawn by human annotators. Several k-Nearest-Neighbor classifiers were compared in this preliminary study, yielding results that appear promising and that clearly point to productive directions for future work.
منابع مشابه
Exploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملSome Issues on Detecting Emotions in Music
Investigating subjective values of audio data is both interesting and pleasant topic for research, gaining attention and popularity among researchers recently. We focus on automatic detection of emotions in songs/audio files, using features based on spectral contents. The data set, containing a few hundreds of music pieces, was used in experiments. The emotions are grouped into 13 or 6 classes....
متن کاملMulti-label methods for prediction with sequential data
The number of methods available for classification of multi-label data has increased rapidly over recent years, yet relatively few links have been made with the related task of classification of sequential data. If labels indices are considered as time indices, the problems can often be seen as equivalent. In this paper we detect and elaborate on connections between multi-label methods and Mark...
متن کاملOrganization Workshop Co-chairs Program Committee Additional Referees an Ensemble Method for Multi-label Classification Using a Transportation Model 49 Ignoring Co-occurring Sources in Learning from Multi-labeled Data Leads Evaluation of Distance Measures for Hierarchical Multi-label Classification in Functional Genomics
Hierarchical multi-label classification (HMLC) is a variant of classification where instances may belong to multiple classes that are organized in a hierarchy. The approach we used is based on decision trees and is set in the predictive clustering trees framework (PCTs), which is implemented in the CLUS system. In this work, we are investigating how different distance measures for hierarchies i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010